Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38659248

RESUMEN

Flexible organic photodetectors (OPDs) hold immense promise in health monitoring sensors, flexible imaging sensors, and portable optical communication. Nevertheless, the actualization of high-performance flexible electronics has been hindered by rigid electrodes such as metals or metal oxides. In this work, we constructed a flexible broadband organic photodetector using a solution-processed polymeric electrode, which exhibits flexibility surpassing that of conventional indium tin oxide (ITO) electrodes. Additionally, we employed a planar-mixed heterojunction (PMHJ) through a sequential deposition method and introduced PC71BM as the third constituent into the PM6/Y6 binary active layer, resulting in enhanced photodetection performance and a broadend spectral range. The optimized OPDs demonstrated remarkable detectivity (D*) exceeding 1012 Jones in brodband from 300 to 900 nm, with a champion D* of 6.31 × 1012 Jones at 790 nm. Furthermore, after undergoing 500 cycles of bending, the D* retained approximately 78% of its original performance, highlighting the outstanding mechanical stability. This work presents a promising pathway toward the development of flexible broadband OPDs using a straightforward method, offering enhanced compatibility in diverse application scenarios and propelling the frontier of flexible optoelectronic research.

2.
Small ; 20(11): e2306749, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38078789

RESUMEN

Stretchable electronics have attracted tremendous attention amongst academic and industrial communities due to their prospective applications in personal healthcare, human-activity monitoring, artificial skins, wearable displays, human-machine interfaces, etc. Other than mechanical robustness, stable performances under complex strains in these devices that are not for strain sensing are equally important for practical applications. Here, a comprehensive summarization of recent advances in stretchable electronics with strain-resistive performance is presented. First, detailed overviews of intrinsically strain-resistive stretchable materials, including conductors, semiconductors, and insulators, are given. Then, systematic representations of advanced structures, including helical, serpentine, meshy, wrinkled, and kirigami-based structures, for strain-resistive performance are summarized. Next, stretchable arrays and circuits with strain-resistive performance, that integrate multiple functionalities and enable complex behaviors, are introduced. This review presents a detailed overview of recent progress in stretchable electronics with strain-resistive performances and provides a guideline for the future development of stretchable electronics.

3.
Physiol Meas ; 44(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099538

RESUMEN

Objective.Photoplethysmography (PPG) is a promising wearable technology that detects volumetric changes in microcirculation using a light source and a sensor on the skin's surface. PPG has been shown to be useful for non-invasive blood pressure (BP) measurement. Deep learning-based BP measurements are now gaining popularity. However, almost all methods focus on 1D PPG. We aimed to design an end-to-end approach for estimating BP using image encodings from a 2D perspective.Approach.In this paper, we present a BP estimation approach based on an image encoding and fusion (BP-IEF) technique. We convert the PPG into five image encodings and use them as input. The proposed BP-IEF consists of two parts: an encoder and a decoder. In addition, three kinds of well-known neural networks are taken as the fundamental architecture of the encoder. The decoder is a hybrid architecture that consists of convolutional and fully connected layers, which are used to fuse features from the encoder.Main results.The performance of the proposed BP-IEF is evaluated on the UCI database in both non-mixed and mixed manners. On the non-mixed dataset, the root mean square error and mean absolute error for systolic BP (SBP) are 13.031 mmHg and 9.187 mmHg respectively, while for diastolic BP (DBP) they are 5.049 mmHg and 3.810 mmHg. On the mixed dataset, the corresponding values for SBP are 4.623 mmHg and 3.058 mmHg, while for DBP the values are 2.350 mmHg and 1.608 mmHg. In addition, both SBP and DBP estimation on the mixed dataset achieved grade A compared to the British Hypertension Society standard. The DBP estimation on the non-mixed dataset also achieved grade A.Significance.The results indicate that the proposed approach has the potential to improve on the current mobile healthcare for cuffless BP measurement.


Asunto(s)
Hipertensión , Fotopletismografía , Humanos , Presión Sanguínea/fisiología , Fotopletismografía/métodos , Determinación de la Presión Sanguínea/métodos , Redes Neurales de la Computación
4.
Nanomaterials (Basel) ; 13(21)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37947743

RESUMEN

Based on the PM6:Y6 binary system, a novel non-fullerene acceptor material, D18-Cl, was doped into the PM6:Y6 blend to fabricate the active layer. The effects of different doping ratios of D18-Cl on organic solar cells were investigated. The best-performing organic solar cell was achieved when the doping ratio of D18-Cl reached 20 wt%. It exhibited a short-circuit current of 28.13 mA/cm2, a fill factor of 70.25%, an open-circuit voltage (Voc) of 0.81 V, and a power conversion efficiency of 16.08%. The introduction of an appropriate amount of D18-Cl expanded the absorption spectrum of the active layer, improved the morphology of the active layer, reduced large molecular aggregation and defects, minimized bimolecular recombination, and optimized the collection efficiency of charge carriers. These results indicate the critical importance of selecting an appropriate third component in binary systems and optimizing the doping ratio to enhance the performance of ternary organic solar cells.

5.
Microsyst Nanoeng ; 9: 124, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37814608

RESUMEN

Muscle groups perform their functions in the human body via bilateral muscle actuation, which brings bionic inspiration to artificial robot design. Building soft robotic systems with artificial muscles and multiple control dimensions could be an effective means to develop highly controllable soft robots. Here, we report a bilateral actuator with a bilateral deformation function similar to that of a muscle group that can be used for soft robots. To construct this bilateral actuator, a low-cost VHB 4910 dielectric elastomer was selected as the artificial muscle, and polymer films manufactured with specific shapes served as the actuator frame. By end-to-end connecting these bilateral actuators, a gear-shaped 3D soft robot with diverse motion capabilities could be developed, benefiting from adjustable actuation combinations. Lying on the ground with all feet on the ground, a crawling soft robot with dexterous movement along multiple directions was realized. Moreover, the directional steering was instantaneous and efficient. With two feet standing on the ground, it also acted as a rolling soft robot that can achieve bidirectional rolling motion and climbing motion on a 2° slope. Finally, inspired by the orbicularis oris muscle in the mouth, a mouthlike soft robot that could bite and grab objects 5.3 times of its body weight was demonstrated. The bidirectional function of a single actuator and the various combination modes among multiple actuators together allow the soft robots to exhibit diverse functionalities and flexibility, which provides a very valuable reference for the design of highly controllable soft robots.

6.
Sensors (Basel) ; 23(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37571694

RESUMEN

Dynamic glucose monitoring is important to reduce the risk of metabolic diseases such as diabetes. Wearable biosensors based on organic electrochemical transistors (OECTs) have been developed due to their excellent signal amplification capabilities and biocompatibility. However, traditional wearable biosensors are fabricated on flat substrates with limited gas permeability, resulting in the inefficient evaporation of sweat, reduced wear comfort, and increased risk of inflammation. Here, we proposed breathable OECT-based glucose sensors by designing a porous structure to realize optimal breathable and stretchable properties. The gas permeability of the device and the relationship between electrical properties under different tensile strains were carefully investigated. The OECTs exhibit exceptional electrical properties (gm ~1.51 mS and Ion ~0.37 mA) and can retain up to about 44% of their initial performance even at 30% stretching. Furthermore, obvious responses to glucose have been demonstrated in a wide range of concentrations (10-7-10-4 M) even under 30% strain, where the normalized response to 10-4 M is 26% and 21% for the pristine sensor and under 30% strain, respectively. This work offers a new strategy for developing advanced breathable and wearable bioelectronics.


Asunto(s)
Técnicas Biosensibles , Glucemia , Automonitorización de la Glucosa Sanguínea , Porosidad , Técnicas Biosensibles/métodos , Glucosa , Transistores Electrónicos
7.
Polymers (Basel) ; 15(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37112022

RESUMEN

For organic solar cells (OSCs), nickel oxide (NiOx) is a potential candidate as the hole transport layer (HTL) material. However, due to the interfacial wettability mismatch, developing solution-based fabrication methods of the NiOx HTL is challenging for OSCs with inverted device structures. In this work, by using N, N-dimethylformamide (DMF) to dissolve poly(methyl methacrylate) (PMMA), the polymer is successfully incorporated into the NiOx nanoparticle (NP) dispersions to modify the solution-processable HTL of the inverted OSCs. Benefiting from the improvements of electrical and surface properties, the inverted PM6:Y6 OSCs based on the PMMA-doped NiOx NP HTL achieves an enhanced power conversion efficiency of 15.11% as well as improved performance stability in ambient conditions. The results demonstrated a viable approach to realize efficient and stable inverted OSCs by tuning the solution-processable HTL.

8.
Adv Sci (Weinh) ; 10(14): e2300504, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36825679

RESUMEN

A critical challenge lies in the development of the next-generation neural interface, in mechanically tissue-compatible fashion, that offer accurate, transient recording electrophysiological (EP) information and autonomous degradation after stable operation. Here, an ultrathin, lightweight, soft and multichannel neural interface is presented based on organic-electrochemical-transistor-(OECT)-based network, with capabilities of continuous high-fidelity mapping of neural signals and biosafety active degrading after performing functions. Such platform yields a high spatiotemporal resolution of 1.42 ms and 20 µm, with signal-to-noise ratio up to ≈37 dB. The implantable OECT arrays can well establish stable functional neural interfaces, designed as fully biodegradable electronic platforms in vivo. Demonstrated applications of such OECT implants include real-time monitoring of electrical activities from the cortical surface of rats under various conditions (e.g., narcosis, epileptic seizure, and electric stimuli) and electrocorticography mapping from 100 channels. This technology offers general applicability in neural interfaces, with great potential utility in treatment/diagnosis of neurological disorders.


Asunto(s)
Implantes Absorbibles , Fenómenos Electrofisiológicos , Ratas , Animales , Electrónica , Encéfalo/fisiología
9.
Proc Natl Acad Sci U S A ; 120(3): e2216672120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36630451

RESUMEN

Cost-effective fabrication of mechanically flexible low-power electronics is important for emerging applications including wearable electronics, artificial intelligence, and the Internet of Things. Here, solution-processed source-gated transistors (SGTs) with an unprecedented intrinsic gain of ~2,000, low saturation voltage of +0.8 ± 0.1 V, and a ~25.6 µW power consumption are realized using an indium oxide In2O3/In2O3:polyethylenimine (PEI) blend homojunction with Au contacts on Si/SiO2. Kelvin probe force microscopy confirms source-controlled operation of the SGT and reveals that PEI doping leads to more effective depletion of the reverse-biased Schottky contact source region. Furthermore, using a fluoride-doped AlOx gate dielectric, rigid (on a Si substrate) and flexible (on a polyimide substrate) SGTs were fabricated. These devices exhibit a low driving voltage of +2 V and power consumption of ~11.5 µW, yielding inverters with an outstanding voltage gain of >5,000. Furthermore, electrooculographic (EOG) signal monitoring can now be demonstrated using an SGT inverter, where a ~1.0 mV EOG signal is amplified to over 300 mV, indicating significant potential for applications in wearable medical sensing and human-computer interfacing.


Asunto(s)
Inteligencia Artificial , Conducción de Automóvil , Humanos , Dióxido de Silicio , Suministros de Energía Eléctrica , Óxidos , Polietileneimina
10.
ACS Appl Mater Interfaces ; 14(32): 36910-36917, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35925803

RESUMEN

The organic solar cell (OSC) has received tremendous consideration for the impressive increased power conversion efficiency (PCE) from 11% to over 18% in the last decade, but another main parameter, the stability, still needs further study to meet the requirements of commercialization. Generally, the inverted structure device shows more stability than the conventional one owing to the structure characteristics, but even so, the performance and stability of the OSC device still need further improvement because of some undesirable contact between the electron transport layer (typically transition metal oxide like ZnO) and the active layer. Here, three Y-series small molecular acceptor materials (Y6, BTP-eC9, and L8-BO) are used as an interfacial modified layer (IML), which could optimize the interfacial characterization of the devices and thus enhance both the performance and stability. As a result, the insertion of the IML improved the interlayer charge transport capacity by passivating the surface of ZnO, leading to the enhancement of short circuit current density (JSC), fill factor, and PCE of the OSCs. Furthermore, because of the protection of the IML, the OSCs show outstanding stability compared to the control device (without IML), which could maintain 80% performance of the device over 150 h.

11.
Opt Lett ; 47(13): 3375-3378, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776629

RESUMEN

Suppressing the dark current is an effective strategy to boost the detection capability of organic photodetectors (OPDs). In this Letter, the water transfer printing method is demonstrated in double bulk heterojunction (BHJ) OPDs, which is solvent-independent rather than the traditional sequential spin-coating method, enabling the elimination of the negative effects of solvents on the underlying film and the suppressing of the dark current. As a result, a photo detectivity up to 1012 Jones was obtained in the wide spectral range of 400-900 nm with a small working area of 3 mm2.

12.
Adv Sci (Weinh) ; 9(23): e2202400, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35713264

RESUMEN

The development of high-performance dopant-free silicon solar cells is severely bottlenecked by opaque electron selective contact. In this paper, high transmittance (80.5% on glass) and low work function (2.92 eV) lithium fluoride (LiFx )/MgFx Oy electron contact stack by tailoring the composition of MgFx Oy hybrid film is reported. This hybrid structure exhibits a high conductivity (2978.4 S cm-1 ) and a low contact resistivity (2.0 mΩ cm2 ). The element profile of LiFx /MgFx Oy contact is measured and the reaction kinetics is analyzed. As a proof-of-concept, this electron selective contact is applied for dopant-free silicon solar cells. An impressive efficiency of 21.3% is achieved on dopant-free monofacial solar cell with molybdenum oxide (MoOx )/zinc-doped indium oxide (IZO) hole contact. An efficiency bifaciality of 71% is obtained for dopant-free bifacial solar cell with full-area LiFx /MgFx Oy /ITO (tin-doped indium oxide) transparent electron contact. It is the highest efficiency bifaciality so far for dopant-free bifacial solar cells to the best knowledge. Both cell configurations with LiFx /MgFx Oy contacts show excellent environment stability. The cell efficiency maintains more than 95% of its initial value after keeping in air for 1500 h. This work provides a new idea to achieve transparent electron contact, showing a great potential for high-efficiency and low-cost optoelectronic devices.

13.
Nat Mater ; 21(5): 564-571, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35501364

RESUMEN

Realizing fully stretchable electronic materials is central to advancing new types of mechanically agile and skin-integrable optoelectronic device technologies. Here we demonstrate a materials design concept combining an organic semiconductor film with a honeycomb porous structure with biaxially prestretched platform that enables high-performance organic electrochemical transistors with a charge transport stability over 30-140% tensional strain, limited only by metal contact fatigue. The prestretched honeycomb semiconductor channel of donor-acceptor polymer poly(2,5-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)-2,5-diketo-pyrrolopyrrole-alt-2,5-bis(3-triethyleneglycoloxy-thiophen-2-yl) exhibits high ion uptake and completely stable electrochemical and mechanical properties over 1,500 redox cycles with 104 stretching cycles under 30% strain. Invariant electrocardiogram recording cycles and synapse responses under varying strains, along with mechanical finite element analysis, underscore that the present stretchable organic electrochemical transistor design strategy is suitable for diverse applications requiring stable signal output under deformation with low power dissipation and mechanical robustness.


Asunto(s)
Electrónica , Transistores Electrónicos , Polímeros/química , Semiconductores , Tiofenos/química
14.
Microsyst Nanoeng ; 8: 37, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35450326

RESUMEN

Origami has become an optimal methodological choice for creating complex three-dimensional (3D) structures and soft robots. The simple and low-cost origami-inspired folding assembly provides a new method for developing 3D soft robots, which is ideal for future intelligent robotic systems. Here, we present a series of materials, structural designs, and fabrication methods for developing independent, electrically controlled origami 3D soft robots for walking and soft manipulators. The 3D soft robots are based on soft actuators, which are multilayer structures with a dielectric elastomer (DE) film as the deformation layer and a laser-cut PET film as the supporting flexible frame. The triangular and rectangular design of the soft actuators allows them to be easily assembled into crawling soft robots and pyramidal- and square-shaped 3D structures. The crawling robot exhibits very stable crawling behaviors and can carry loads while walking. Inspired by origami folding, the pyramidal and square-shaped 3D soft robots exhibit programmable out-of-plane deformations and easy switching between two-dimensional (2D) and 3D structures. The electrically controllable origami deformation allows the 3D soft robots to be used as soft manipulators for grasping and precisely locking 3D objects. This work proves that origami-inspired fold-based assembly of DE actuators is a good reference for the development of soft actuators and future intelligent multifunctional soft robots.

15.
Sci Adv ; 8(2): eabl6700, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35030019

RESUMEN

The coronavirus pandemic has highlighted the importance of developing intelligent robotics to prevent infectious disease spread. Human-machine interfaces (HMIs) give a chance of interactions between users and robotics, which play a significant role in teleoperating robotics. Conventional HMIs are based on bulky, rigid, and expensive machines, which mainly focus on robots/machines control, but lack of adequate feedbacks to users, which limit their applications in conducting complicated tasks. Therefore, developing closed-loop HMIs with both accurate sensing and feedback functions is extremely important. Here, we present a closed-loop HMI system based on skin-integrated electronics, whose electronics compliantly interface with the whole body for wireless motion capturing and haptic feedback via Bluetooth, Wireless Fidelity (Wi-Fi), and Internet. The integration of visual and haptic VR via skin-integrated electronics together into a closed-loop HMI for robotic VR demonstrates great potentials in noncontact collection of bio samples, nursing infectious disease patients and many others.

16.
Nanomaterials (Basel) ; 11(11)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34835773

RESUMEN

Copper antimony sulfide (CuSbS2) has attracted significant interest as an earth-abundant photovoltaic absorber. However, the efficiency of the current CuSbS2 photovoltaic device is too low to meet the requirement of a large-scale application. In this study, selenylation was introduced to optimize the band structure and improve the device performance. Selenized CuSbS2 [CuSbS2(Se)] films were realized using porous CuSbS2 films prepared by spray deposition with a post-treatment in Se vapor. The as-prepared CuSbS2(Se) films exhibited a compact structure. X-ray diffraction and elemental analysis confirmed the effective doping of Se into the lattice by substituting a part of S in CuSbS2. Elemental analysis revealed a gradient distribution for Se from the top surface to the deeper regions, and the substitution rate was very high (>39%). Dark J-V characteristics and AC impedance spectroscopy analysis showed that selenylation significantly reduced the carrier recombination center. As a result, the selenized CuSbS2 device exhibited a significant efficiency improvement from 0.12% to 0.90%, which is much higher than that of the simply annealed device (0.46%), indicating this technique is a promising approach to improve the performance of CuSbS2 solar cells.

17.
Nanomaterials (Basel) ; 11(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34835805

RESUMEN

In order to overcome the various defects caused by the limitations of solid metal as a shielding material, the development of electromagnetic shielding materials with flexibility and excellent mechanical properties is of great significance for the next generation of intelligent electronic devices. Here, the aramid nanofiber/Ti3C2Tx MXene (ANF/MXene) composite films with multilayer structure were successfully prepared through a simple alternate vacuum-assisted filtration (AVAF) process. With the intervention of the ANF layer, the multilayer-structure film exhibits excellent mechanical properties. The ANF2/MXene1 composite film exhibits a tensile strength of 177.7 MPa and a breaking strain of 12.6%. In addition, the ANF5/MXene4 composite film with a thickness of only 30 µm exhibits an electromagnetic interference (EMI) shielding efficiency of 37.5 dB and a high EMI-specific shielding effectiveness value accounting for thickness (SSE/t) of 4718 dB·cm2 g-1. Moreover, the composite film was excellent in heat-insulation performance and in avoiding light-to-heat conversion. No burning sensation was produced on the surface of the film with a thickness of only 100 µm at a high temperature of 130 °C. Furthermore, the surface of the film was only mild when touched under simulated sunlight. Therefore, our multilayer-structure film has potential significance in practical applications such as next-generation smart electronic equipment, communications, and military applications.

18.
Adv Sci (Weinh) ; 8(20): e2101473, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34449126

RESUMEN

Source-gated transistors (SGTs), which are typically realized by introducing a source barrier in staggered thin-film transistors (TFTs), exhibit many advantages over conventional TFTs, including ultrahigh gain, lower power consumption, higher bias stress stability, immunity to short-channel effects, and greater tolerance to geometric variations. These properties make SGTs promising candidates for readily fabricated displays, biomedical sensors, and wearable electronics for the Internet of Things, where low power dissipation, high performance, and efficient, low-cost manufacturability are essential. In this review, the general aspects of SGT structure, fabrication, and operation mechanisms are first discussed, followed by a detailed property comparison with conventional TFTs. Next, advances in high-performance SGTs based on silicon are first discussed, followed by recent advances in emerging metal oxides, organic semiconductors, and 2D materials, which are individually discussed, followed by promising applications that can be uniquely realized by SGTs and their circuitry. Lastly, this review concludes with challenges and outlook overview.

19.
Front Chem ; 9: 703561, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249871

RESUMEN

Recently, tin oxide (SnO2) nanoparticles (NPs) have attracted considerable attention as the electron transporting layer (ETL) for organic solar cells (OSCs) due to their superior electrical properties, excellent chemical stability, and compatibility with low-temperature solution fabrication. However, the rough surface of SnO2 NPs may generate numerous defects, which limits the performance of the OSCs. In this study, we introduce a perylene diimide derivative (PDINO) that could passivate the defects between SnO2 NP ETL and the active layer. Compared with the power conversion efficiency (PCE) of the pristine SnO2 ETL-based OSCs (12.7%), the PDINO-modified device delivers a significantly increased PCE of 14.9%. Overall, this novel composite ETL exhibits lowered work function, improved electron mobility, and reduced surface defects, thus increasing charge collection efficiency and restraining defect-caused molecular recombination in the OSC. Overall, this work demonstrates a strategy of utilizing the organic-inorganic hybrid ETL that has the potential to overcome the drawbacks of SnO2 NPs, thereby developing efficient and stable OSCs.

20.
Nanotechnology ; 32(32)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33957611

RESUMEN

Solution-processed organic thin-film transistors (OTFTs) are regarded as the promising candidates for low-cost gas sensors due to their advantages of high throughput, large-area and sensitive to various gas analytes. Microstructure control of organic active layers in OTFTs is an effective route to improve the sensing performance. In this work, we report a simple method to modify the morphology of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) thin films via doping gold nanorods (Au NRs) for enhancing the performance of the corresponding OTFT sensors for nitrogen dioxide (NO2) detection. With the optimized doping ratio of Au nanorods, the TIPS-pentacene OTFT snesors not only exhibit a 3-fold increase in mobility, but also obtain a high sensitivity of 70% to 18 ppm NO2with a detection limit of 270 ppb. The microstructures and morphologies of the modified TIPS-pentacene thin film characterized by atomic force microscopy and field scanning electron microscope. The experimental results indicate that the proper addition of Au NRs could effectively regulate the grain size of TIPS-pentacene, and therein control the density of grain boundaries during the crystallization, which is essential for the high-performance gas sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...